Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mahboubeh A. Sharif,^a Hossein Aghabozorg^b* and Abolghasem Moghimi^c

^aDepartment of Chemistry, Islamic Azad University, Qom Branch, Iran, ^bDepartment of Chemistry, Teacher Training University, PO Box 15614, Tehran, Iran, and ^cDepartment of Chemistry, Imam Hossein University, PO Box 16575-347, Tehran, Iran

Correspondence e-mail: aghabozorg@saba.tmu.ac.ir

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.007 Å R factor = 0.026 wR factor = 0.066 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2007 International Union of Crystallography

All rights reserved

metal-organic papers

catena-Poly[2,4,6-triamino-1,3,5-triazin-1-ium [[aqua(pyridine-2,6-dicarboxylato- $\kappa^3 O,N,O'$)bismuthate(III)]- μ -pyridine-2,6-dicarboxylato- $\kappa^4 O,N,O'$:O']]

The reaction of Bi(NO₃)₃·5H₂O with a 1:2 molecular complex of pyridine-2,6-dicarboxylic acid (pydcH₂) and 2,4,6-triamino-1,3,5-triazine (tata) in aqueous solution leads to formation of the title compound, $(C_3H_7N_6)[Bi(C_7H_3NO_4)_2(H_2O)]$. The Bi^{III} atom is octacoordinated by two tridentate pydc²⁻ ligands, one O atom of a water molecule and one O atom from a Bi-O-Bi bridge. Extensive $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonding exists between the anionic polymers and the tataH⁺ cations.

Comment

We have previously reported a number of proton transfer compounds (Aghabozorg, Ghadermazi & Attar Gharamaleki, 2006; Sheshmani *et al.*, 2006; Sharif *et al.*, 2006) and some mono- and dinuclear complexes of these with metal cations (Aghabozorg, Ghasemikhah *et al.*, 2006; Aghabozorg, Aghajani & Sharif, 2006; Aghajani *et al.*, 2006; Sharif *et al.*, 2006). The title compound, (I), is a polymeric Bi^{III} complex containing pyridine-2,6-dicarboxylate (pydc^{2–}) ligands and protonated 2,4,6-triamino-1,3,5-triazine (tataH⁺) counter-ions.

The crystal structure of (I) contains anionic ${\rm Bi}({\rm C}_7{\rm H}_3{\rm NO}_4)_2({\rm H}_2{\rm O})_n^{n-}$ polymers (Fig. 1). Each Bi^{III} atom is octacoordinated by two tridentate pydc²⁻ ligands, one O atom of a water molecule and one O atom from a Bi-O8-Bi bridge (Table 1). The bridging carboxylate group exhibits an additional Bi $(x, -y - \frac{1}{2}, z + \frac{1}{2}) \cdots$ O6 contact of 3.366 (4) Å so that it approaches a highly asymmetric bidentate binding mode. The Bi-O bond distances (Table 1) span a broad range, with short distances (Bi-O1ⁱ and Bi-O6) lying opposite longer distances (Bi-O8 and Bi-O9).

The anionic polymers lie in layers parallel to the *ac* planes, with the tataH⁺ cations between them (Fig. 2). The tataH⁺ cations form pairs, with their planes parallel and separated by 3.27 (1) Å, indicating a π - π stacking interaction between

Received 18 March 2007 Accepted 26 April 2007

Figure 1

The asymmetric unit, together with atom O8a to complete the coordination of Bi1. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. Atom O8a is generated by the symmetry code $(x, -\frac{1}{2} - y, -\frac{1}{2} + z)$.

Figure 2

Packing diagram of (I) showing $\{Bi(C_7H_3NO_4)_2(H_2O)\}_n^{n-}$ polymers in layers parallel to the *ac* planes, with pairs of tataH⁺ cations between them. H atoms have been omitted. Dashed lines denote hydrogen bonds.

them. Extensive $O-H \cdots O$ and $N-H \cdots O$ hydrogen bonding (Table 2) exists between the anionic polymers and the tata H^+ cations.

Experimental

A solution of $Bi(NO_3)_3$. $5H_2O$ (0.058 g, 0.083 mmol) in water (5 ml) was added to a stirred aqueous solution (10 ml) of a 1:2 molecular complex of pyridine-2,6-dicarboxylic acid and 2,4,6-triamino-1,3,5-triazine (0.070 g, 0.167 mmol). The volume of the resulting suspension was increased by adding 50 ml of water, and the clear solution was stirred at 313–323 K for 2 h. Colourless single crystals of (I) were

collected from the solution after standing at room temperature for a few days.

V = 2025.6 (7) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.20 \times 0.05 \text{ mm}$

2 standard reflections

every 98 reflections

intensity decay: 2.5%

H-atom parameters constrained

4871 independent reflections

3715 reflections with $I > 2\sigma(I)$

 $\mu = 8.78 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.034$

316 parameters

 $\Delta \rho_{\rm max} = 0.69 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -1.14 \text{ e} \text{ Å}^{-3}$

Z = 4

Crystal data

 $(C_3H_7N_6)[Bi(C_7H_3NO_4)_2(H_2O)]$ $M_r = 684.35$ Monoclinic, $P2_1/c$ a = 9.3948 (19) Å b = 23.351 (5) Å c = 9.950 (2) Å $\beta = 111.88$ (3)°

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.195, T_{\max} = 0.645$ 5152 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.066$ S = 1.034871 reflections

Table 1

Selected geometric parameters (Å, °).

Bi1-O1	2.333 (3)	Bi1-O5	2.486 (3)
Bi1-O6	2.374 (3)	Bi1-O2	2.535 (3)
Bi1-N1	2.448 (3)	Bi1-O8 ⁱ	2.586 (3)
Bi1-N2	2.452 (3)	Bi1-O9	2.618 (3)
O1-Bi1-N1	67.22 (11)	O6-Bi1-O2	76.66 (11)
O6-Bi1-N2	66.66 (11)	N1-Bi1-O2	64.84 (11)
O1-Bi1-O5	80.24 (12)	O1-Bi1-O9	70.48 (11)
O6-Bi1-O5	130.03 (11)	O6-Bi1-O9	149.91 (11)
N2-Bi1-O5	64.22 (11)	O5-Bi1-O9	73.39 (11)
O1-Bi1-O2	131.96 (11)	O2-Bi1-O9	95.40 (11)

Symmetry code: (i) $x, -y - \frac{1}{2}, z - \frac{1}{2}$.

lable 2	-	
Hydrogen-bond geometr	y (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3N\cdots O7^{ii}$	0.90	1.84	2.686 (5)	156
$N6-H6A\cdots O4^{iii}$	0.90	1.99	2.892 (5)	174
$N6-H6B\cdots O3^{iv}$	0.90	2.51	3.285 (6)	144
$N7 - H7A \cdots O1$	0.90	2.17	3.001 (5)	152
$N7 - H7B \cdot \cdot \cdot O1^{v}$	0.90	2.33	3.190 (5)	160
N8−H8A···O5 ⁱⁱ	0.90	1.97	2.842 (5)	162
$N8 - H8B \cdot \cdot \cdot O2^{vi}$	0.90	2.14	3.013 (5)	162
$O9-H9A\cdots N4$	0.85	2.09	2.898 (5)	159
$O9-H9B\cdots O4^{iii}$	0.85	2.14	2.810 (5)	135

Symmetry codes: (ii) -x + 1, -y, -z + 2; (iii) $x, -y - \frac{1}{2}, z - \frac{1}{2}$; (iv) x, y, z - 1; (v) -x + 1, -y, -z + 3; (vi) $-x + 1, y + \frac{1}{2}, -z + \frac{5}{2}$.

H atoms bound to C atoms were placed in calculated positions and refined using a riding model with C–H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms bound to N and O were located in difference Fourier maps. The N–H and O–H distances were normalized to 0.90 and 0.85 Å, respectively, and the H atoms were subsequently refined as riding with $U_{iso}(H) = 1.2U_{eq}(ON)$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms, 1995); program(s) used to solve structure: *SHELXTL* (Bruker, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

- Aghabozorg, H., Aghajani, Z. & Sharif, M. A. (2006). Acta Cryst. E62, m1930–m1932.
- Aghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, 03174–03176.

- Aghabozorg, H., Ghasemikhah, P., Ghadermazi, M. & Sheshmani, S. (2006). *Acta Cryst.* E62, m2835–m2837.
- Aghajani, Z., Sharif, M. A., Aghabozorg, H. & Naderpour, A. (2006). *Acta Cryst.* E62, m830–m832.
- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Enraf–Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Harms, K. (1995). XCAD4. University of Marburg, Germany.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sharif, M. A., Aghabozorg, H., Shokrollahi, A., Shamsipur, M., Moghimi, A. & Kickelbick, G. (2006). Pol. J. Chem. 80, 847–863.
- Sheshmani, S., Ghadermazi, M. & Aghabozorg, H. (2006). Acta Cryst. E62, 03620-03622.